login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of (n+1) X (k+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
9

%I #6 Jun 20 2022 21:01:17

%S 112,404,404,1264,1152,1264,4568,2924,2924,4568,14368,9108,6328,9108,

%T 14368,52016,25292,17312,17312,25292,52016,164416,82956,43240,41832,

%U 43240,82956,164416,596192,243164,129848,93680,93680,129848,243164

%N T(n,k) is the number of (n+1) X (k+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).

%C Table starts

%C 112 404 1264 4568 14368 52016 164416 596192

%C 404 1152 2924 9108 25292 82956 243164 823836

%C 1264 2924 6328 17312 43240 129848 354856 1129256

%C 4568 9108 17312 41832 93680 254784 639440 1878960

%C 14368 25292 43240 93680 191128 476648 1109272 3039128

%C 52016 82956 129848 254784 476648 1092120 2354408 5995464

%C 164416 243164 354856 639440 1109272 2354408 4736536 11294552

%C 596192 823836 1129256 1878960 3039128 5995464 11294552 25287288

%C 1892992 2495084 3265864 5098448 7775608 14369096 25494136 53827832

%C 6874304 8636892 10806344 15829008 22805432 39500136 66161144 132005016

%H R. H. Hardin, <a href="/A234681/b234681.txt">Table of n, a(n) for n = 1..260</a>

%F Empirical for column k (the k=2..7 order 18 recurrence also works for k=1; apparently all rows and columns satisfy the same order 18 recurrence):

%F k=1: a(n) = 22*a(n-2) -120*a(n-4).

%F k=2..7: [same order 18 recurrence].

%e Some solutions for n=5, k=4:

%e 1 4 2 5 0 5 1 5 2 5 2 5 3 5 3 1 5 4 5 3

%e 2 0 3 1 1 1 2 1 3 1 2 0 3 0 3 1 0 4 0 3

%e 1 4 2 5 0 4 0 4 1 4 0 3 1 3 1 1 5 4 5 3

%e 4 2 5 3 3 2 3 2 4 2 2 0 3 0 3 1 0 4 0 3

%e 1 4 2 5 0 4 0 4 1 4 2 5 3 5 3 1 5 4 5 3

%e 2 0 3 1 1 0 1 0 2 0 3 1 4 1 4 2 1 5 1 4

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 29 2013