%I #9 Jun 19 2022 01:05:24
%S 112,404,1264,4568,14368,52016,164416,596192,1892992,6874304,21915904,
%T 79691648,254990848,928299776,2979890176,10859597312,34958682112,
%U 127515167744,411504185344,1502182012928,4858050224128,17746184155136
%N Number of (n+1) X (1+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5 (constant-stress 1 X 1 tilings).
%H R. H. Hardin, <a href="/A234674/b234674.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 22*a(n-2) - 120*a(n-4).
%F Empirical g.f.: 4*x*(28 + 101*x - 300*x^2 - 1080*x^3) / ((1 - 10*x^2)*(1 - 12*x^2)). - _Colin Barker_, Oct 16 2018
%e Some solutions for n=5:
%e 0 3 4 0 0 5 4 5 3 0 5 4 3 2 0 3 2 4 5 3
%e 4 2 1 2 0 0 5 1 0 2 1 5 0 4 2 0 4 1 2 5
%e 0 3 5 1 5 0 4 5 3 0 4 3 2 1 1 4 1 3 3 1
%e 4 2 3 4 5 5 4 0 0 2 1 5 0 4 3 1 4 1 1 4
%e 1 4 5 1 0 5 4 5 4 1 3 2 4 3 1 4 3 5 3 1
%e 2 0 2 3 3 3 5 1 1 3 0 4 1 5 4 2 3 0 2 5
%Y Column 1 of A234681.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 29 2013