login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234665
T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4 (constant-stress 1 X 1 tilings).
7
298, 1820, 1820, 11112, 9774, 11112, 68086, 52646, 52646, 68086, 417050, 286668, 250792, 286668, 417050, 2564388, 1566596, 1219652, 1219652, 1566596, 2564388, 15760606, 8659270, 5969944, 5359466, 5969944, 8659270, 15760606, 97264082
OFFSET
1,1
COMMENTS
Table starts
298 1820 11112 68086 417050 2564388
1820 9774 52646 286668 1566596 8659270
11112 52646 250792 1219652 5969944 29828832
68086 286668 1219652 5359466 23814574 109044744
417050 1566596 5969944 23814574 96408730 406314140
2564388 8659270 29828832 109044744 406314140 1591037136
15760606 48048220 150093796 504872642 1736939430 6340767776
97264082 269752200 770712800 2403596054 7695605586 26370069748
599847168 1520415050 3987209216 11568505044 34563948112
3715680490 8671291020 21036841216 57131064334
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 11*a(n-1) +17*a(n-2) -492*a(n-3) +1050*a(n-4) +1260*a(n-5).
k=2: [order 16].
k=3: [order 39].
EXAMPLE
Some solutions for n=2, k=4:
3 3 5 4 5 4 4 4 5 0 0 0 6 3 3 4 4 2 6 5
1 5 3 6 3 1 5 1 6 5 5 1 3 4 0 4 0 2 2 5
2 2 4 3 4 0 0 0 1 4 3 3 1 6 6 0 0 6 2 1
CROSSREFS
Sequence in context: A200581 A200218 A284156 * A234659 A186126 A129037
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 29 2013
STATUS
approved