login
A234647
Primes of the form q(p) - 1, where p is a prime and q(.) is the strict partition function (A000009).
3
2, 11, 17, 37, 53, 103, 1259, 1609, 5119, 9791, 70487, 570077, 20792119, 281138047, 23515017983, 35692320959, 48626519093, 3626048321047, 27077619952639, 1651411233432319, 10743948315198451, 13378670620050079, 39413984631175423, 58553713102334907283, 145464242180631569963, 25408177717067357968543, 1374387931601409538722802926765483199, 20557774525717988142856527912112710143, 326033386646595458662191828888146112979, 27403889354101748193301659902924397784656229
OFFSET
1,1
COMMENTS
Though the primes in this sequence are very rare, by the conjecture in A234615 there should be infinitely many such primes.
See A234644 for a list of known primes p with q(p) - 1 prime.
LINKS
FORMULA
a(n) = A000009(A234615(n)) - 1.
MAPLE
a(1) = 2 since 2 = q(5) - 1 with 2 and 5 both prime.
MATHEMATICA
p[n_]:=A234615(n)
Table[PartitionsQ[p[n]]-1, {n, 1, 30}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 29 2013
STATUS
approved