login
A234643
E.g.f.: Sum_{n>=0} Integral^n (exp(x) + 1)^n dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration.
0
1, 2, 5, 13, 35, 99, 297, 951, 3265, 12047, 47761, 202975, 921281, 4447327, 22737537, 122639583, 695404929, 4132531679, 25667031937, 166211936735, 1119791799425, 7833568488415, 56802921911681, 426267651506655, 3305731721387649, 26457699508131807, 218276886237532033
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(k,j) * j^(n-k).
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 13*x^3/3! + 35*x^4/4! + 99*x^5/5! +...
where the e.g.f. may be expressed as a series involving iterated integration:
A(x) = 1 + Integral (exp(x)+1) dx + Integral^2 (exp(x)+1)^2 dx^2 + Integral^3 (exp(x)+1)^3 dx^3 + Integral^4 (exp(x)+1)^4 dx^4 +...
PROG
(PARI) {a(n)=sum(k=0, n, sum(j=0, k, binomial(k, j)*j^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {INTEGRATE(n, F)=local(G=F); for(i=1, n, G=intformal(G)); G}
{a(n)=local(A=1+x); A=1+sum(k=1, n, INTEGRATE(k, (exp(x+x*O(x^n))+1)^k )); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A105795.
Sequence in context: A376277 A107086 A294790 * A089846 A258450 A131868
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2013
STATUS
approved