Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:46:06
%S 1,2,4,8,16,32,64,128,256,511,1020,2036,4064,8112,16192,32320,64513,
%T 128773,257041,513074,1024136,2044256,4080496,8144991,16258042,
%U 32452329,64777398,129300775,258094504,515176904,1028333569,2052634583,4097219870,8178372713
%N Number of binary words of length n which have no 0^b 1 1 0^a 1 0 1 0^b - matches, where a=0, b=2.
%H Alois P. Heinz, <a href="/A234590/b234590.txt">Table of n, a(n) for n = 0..1000</a>
%H B. K. Miceli, J, Remmel, <a href="http://puma.dimai.unifi.it/23_3/miceli_remmel.pdf">Minimal Overlapping Embeddings and Exact Matches in Words</a>, PU. M. A., Vol. 23 (2012), No. 3, pp. 291-315.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,0,0,0,-1,1,1).
%F G.f.: (1+x^7+x^8)/(1-2*x+x^7-x^8-x^9). - _Alois P. Heinz_, Jan 08 2014
%p a:= n-> coeff(series(-(x^8+x^7+1)/(x^9+x^8-x^7+2*x-1), x, n+1), x, n):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jan 08 2014
%t a[n_ /; n<=8]:= 2^n; a[n_]:= a[n] =2*a[n-1] -a[n-7] +a[n-8] +a[n-9]; Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Mar 18 2014 *)
%o (PARI) my(x='x+O('x^60)); Vec((1+x^7+x^8)/(1-2*x+x^7-x^8-x^9)) \\ _G. C. Greubel_, Sep 14 2019
%o (Magma) I:=[1,2,4,8,16,32,64,128,256]; [n le 9 select I[n] else 2*Self(n-1) - Self(n-7) + Self(n-8) + Self(n-9): n in [1..60]]; // _G. C. Greubel_, Sep 14 2019
%o (Sage)
%o def A234590_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P((1+x^7+x^8)/(1-2*x+x^7-x^8-x^9)).list()
%o A234590_list(60) # _G. C. Greubel_, Sep 14 2019
%o (GAP) a:=[1,2,4,8,16,32,64,128,256];; for n in [10..60] do a[n]:=2*a[n-1] -a[n-7]+a[n-8]+a[n-9]; od; a; # _G. C. Greubel_, Sep 14 2019
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jan 01 2014
%E a(17)-a(33) from _Alois P. Heinz_, Jan 08 2014