The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234565 Expansion of f(-q^3)^2 * Q(q^3) + 48 * q * f(-q^3)^10 in powers of q. 2
1, 48, 0, 238, -480, 0, 1679, 1680, 0, 2162, -1440, 0, 2401, -5040, 0, -6958, 11424, 0, -1442, 0, 0, -23040, -12480, 0, 1918, -7920, 0, -9362, 6720, 0, 14641, 50592, 0, 0, -36960, 0, 80640, -28560, 0, -20398, 0, 0, 28083, -34320, 0, 64078, 103776, 0, -38398 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
f(-q) (g.f. A010815) and Q(q) (g.f. A004009) are Ramanujan q-series.
LINKS
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12).
a(3*n + 2) = 0. a(3*n) = A122266(n). a(3*n + 1) = 48 * A010818(n).
EXAMPLE
G.f. = 1 + 48*x + 238*x^3 - 480*x^4 + 1679*x^6 + 1680*x^7 + 2162*x^9 + ...
G.f. = q + 48*q^5 + 238*q^13 - 480*q^17 + 1679*q^25 + 1680*q^29 + 2162*q^37 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; Q:= (eta[q^3]^24 + 256*eta[q^6]^24)/( eta[q^3]*eta[q^6])^8; a:= CoefficientList[Series[q^(-1/4)*eta[q^3]^2*(48*q^(0/4)*eta[q^3]^8 + Q), {q, 0, 55}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 07 2018 *)
PROG
(PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = 64 * x^3 * (eta(x^12 + A) / eta(x^3 + A))^8; polcoeff( 48 * x * eta(x^3 + A)^10 + (1 + 4*B + B^2) * eta(x^3 + A)^18 / eta(x^6 + A)^8, n))}
(PARI) {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}
CROSSREFS
Sequence in context: A271194 A002834 A057380 * A362715 A036210 A257875
KEYWORD
sign
AUTHOR
Michael Somos, Jan 06 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 02:16 EDT 2024. Contains 373492 sequences. (Running on oeis4.)