login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234565 Expansion of f(-q^3)^2 * Q(q^3) + 48 * q * f(-q^3)^10 in powers of q. 2
1, 48, 0, 238, -480, 0, 1679, 1680, 0, 2162, -1440, 0, 2401, -5040, 0, -6958, 11424, 0, -1442, 0, 0, -23040, -12480, 0, 1918, -7920, 0, -9362, 6720, 0, 14641, 50592, 0, 0, -36960, 0, 80640, -28560, 0, -20398, 0, 0, 28083, -34320, 0, 64078, 103776, 0, -38398 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

f(-q) (g.f. A010815) and Q(q) (g.f. A004009) are Ramanujan q-series.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

FORMULA

G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t).

a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12).

a(3*n + 2) = 0. a(3*n) = A122266(n). a(3*n + 1) = 48 * A010818(n).

EXAMPLE

G.f. = 1 + 48*x + 238*x^3 - 480*x^4 + 1679*x^6 + 1680*x^7 + 2162*x^9 + ...

G.f. = q + 48*q^5 + 238*q^13 - 480*q^17 + 1679*q^25 + 1680*q^29 + 2162*q^37 + ...

MATHEMATICA

eta[q_]:= q^(1/24)*QPochhammer[q]; Q:= (eta[q^3]^24 + 256*eta[q^6]^24)/( eta[q^3]*eta[q^6])^8; a:= CoefficientList[Series[q^(-1/4)*eta[q^3]^2*(48*q^(0/4)*eta[q^3]^8 + Q), {q, 0, 55}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 07 2018 *)

PROG

(PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = 64 * x^3 * (eta(x^12 + A) / eta(x^3 + A))^8; polcoeff( 48 * x * eta(x^3 + A)^10 + (1 + 4*B + B^2) * eta(x^3 + A)^18 / eta(x^6 + A)^8, n))}

(PARI) {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}

CROSSREFS

Cf. A010818, A122266.

Sequence in context: A271194 A002834 A057380 * A036210 A257875 A037941

Adjacent sequences: A234562 A234563 A234564 * A234566 A234567 A234568

KEYWORD

sign

AUTHOR

Michael Somos, Jan 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 04:36 EST 2022. Contains 358454 sequences. (Running on oeis4.)