Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 20 2022 20:59:54
%S 70,220,220,618,546,618,1954,1240,1240,1954,5506,3384,2390,3384,5506,
%T 17518,8416,5710,5710,8416,17518,49506,24420,12750,11982,12750,24420,
%U 49506,158518,64240,33946,23830,23830,33946,64240,158518,449170,194124
%N T(n,k) is the number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4 (constant-stress 1 X 1 tilings).
%C Table starts
%C 70 220 618 1954 5506 17518 49506 158518 449170
%C 220 546 1240 3384 8416 24420 64240 194124 527920
%C 618 1240 2390 5710 12750 33946 83438 238306 621918
%C 1954 3384 5710 11982 23830 57210 128614 339234 831334
%C 5506 8416 12750 23830 42982 94114 195558 479914 1108726
%C 17518 24420 33946 57210 94114 187686 358450 810702 1742578
%C 49506 64240 83438 128614 195558 358450 635654 1336954 2694006
%C 158518 194124 238306 339234 479914 810702 1336954 2614518 4927738
%C 449170 527920 621918 831334 1108726 1742578 2694006 4927738 8740870
%C 1447510 1640076 1862530 2348514 2964106 4339470 6297370 10773174 17998810
%H R. H. Hardin, <a href="/A234564/b234564.txt">Table of n, a(n) for n = 1..364</a>
%F Empirical for column k: (column 2..7 recurrence works also for k=1; apparently all rows and columns satisfy the same order 14 recurrence):
%F k=1: a(n) = 3*a(n-1) +18*a(n-2) -54*a(n-3) -80*a(n-4) +240*a(n-5).
%F k=2..7: [same order 14 recurrence].
%e Some solutions for n=5, k=4:
%e 4 0 4 0 4 4 1 4 1 2 0 3 1 2 0 3 2 4 2 3
%e 2 2 2 2 2 2 3 2 3 0 2 1 3 0 2 1 4 2 4 1
%e 4 0 4 0 4 4 1 4 1 2 0 3 1 2 0 3 2 4 2 3
%e 2 2 2 2 2 3 4 3 4 1 2 1 3 0 2 1 4 2 4 1
%e 0 4 0 4 0 4 1 4 1 2 0 3 1 2 0 1 0 2 0 1
%e 0 0 0 0 0 3 4 3 4 1 2 1 3 0 2 1 4 2 4 1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 28 2013