login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial(10*n+5,n)/(2*n+1).
9

%I #19 Sep 08 2022 08:46:06

%S 1,5,60,935,16555,316251,6353760,132321990,2830853610,61841702065,

%T 1373736123760,30935736733230,704631080073635,16204866668942000,

%U 375762274309378440,8775795659568727020,206241872189050376550,4873761343609509542490

%N Binomial(10*n+5,n)/(2*n+1).

%C Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=5.

%H Vincenzo Librandi, <a href="/A234528/b234528.txt">Table of n, a(n) for n = 0..200</a>

%H J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.

%H Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>

%H Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.

%F G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=5.

%t Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* _Vincenzo Librandi_, Dec 28 2013 *)

%o (PARI) a(n) = binomial(10*n+5,n)/(2*n+1);

%o (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}

%o (Magma) [Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // _Vincenzo Librandi_, Dec 28 2013

%Y Cf. A000108, A059968, A234525, A234526, A234527, A234529, A234570, A234571, A234573, A229963.

%K nonn

%O 0,2

%A _Tim Fulford_, Dec 27 2013