Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 31 2013 05:40:21
%S 2,3,35,119,2519,277199,5045039,183783599,4655851199,80313433199,
%T 32607253879199,2743667504978399,58772246027695199,5038384364010597599
%N a(n) = the smallest multiple of prime(n) such that a(n) == j-1 (mod j) for each integer j with 1 <= j < prime(n).
%C Sequence of numbers k(n): 1, 1, 7, 17, 229, 21323, 296767, 9672821, 202428313, 2769428731, 1051846899329, ...
%e Prime(4) = 7, a(4) = 119 = 7*17 because 119 is smallest multiple of 7 such that 119 mod 1 = 0, 119 mod 2 = 1, 119 mod 3 = 2, 119 mod 4 = 3, 119 mod 5 = 4, 119 mod 6 = 5.
%o (PARI) for(n=1, 10, p=prime(n); forstep(m=p, 10^11, p, forstep(j=p-1, 1, -1, if(m%j<>j-1, next(2))); print(n " " m); next(2))) \\ _Donovan Johnson_, Dec 30 2013
%Y Cf. A000040 (primes), A094998.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Dec 25 2013
%E a(12)-a(14) from _Donovan Johnson_, Dec 30 2013