%I #4 Dec 25 2013 14:10:15
%S 300,2540,2540,21288,38236,21288,185000,578080,578080,185000,1604528,
%T 9552088,14995212,9552088,1604528,14012832,160156724,462953524,
%U 462953524,160156724,14012832,122325680,2732474648,14549138832,28707486504
%N T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 12 and no adjacent elements equal
%C Table starts
%C .......300........2540..........21288...........185000.............1604528
%C ......2540.......38236.........578080..........9552088...........160156724
%C .....21288......578080.......14995212........462953524.........14549138832
%C ....185000.....9552088......462953524......28707486504.......1837780395524
%C ...1604528...160156724....14549138832....1837780395524.....238953447046476
%C ..14012832..2732474648...478670480044..126450980383644...34542252827375948
%C .122325680.46838063500.15886650199580.8845207288479456.5091700269456920600
%H R. H. Hardin, <a href="/A234412/b234412.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 10]
%F k=2: [order 52]
%e Some solutions for n=2 k=4
%e ..0..2..1..6..3....1..2..0..4..1....0..1..2..6..5....1..2..0..4..3
%e ..1..6..0..2..0....0..6..5..6..0....1..6..1..0..1....0..6..2..6..0
%e ..0..2..1..6..2....1..4..0..4..3....0..4..0..5..6....2..4..0..4..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 25 2013