login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X(1+2) 0..3 arrays with no increasing sequence of length 3 horizontally or diagonally downwards
1

%I #5 Dec 25 2013 11:11:37

%S 196316,9292808,426876528,19562241288,893326493316,40779627244572,

%T 1860744623018290,84899953913483407,3873501429344049400,

%U 176724495756544758956,8062812768583455896334,367854389640020762312297

%N Number of (n+2)X(1+2) 0..3 arrays with no increasing sequence of length 3 horizontally or diagonally downwards

%C Column 1 of A234393

%H R. H. Hardin, <a href="/A234389/b234389.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 56*a(n-1) -26586*a(n-3) +161889*a(n-4) +3740796*a(n-5) -30895097*a(n-6) -187582514*a(n-7) +2012131719*a(n-8) +3280745010*a(n-9) -59781770178*a(n-10) +7670618556*a(n-11) +904843980967*a(n-12) -892611508774*a(n-13) -7204612789531*a(n-14) +10892252119424*a(n-15) +28238885649127*a(n-16) -56684455395140*a(n-17) -35741928894200*a(n-18) +126732346860892*a(n-19) -78600993413254*a(n-20) -49070875873290*a(n-21) +298655389117913*a(n-22) -293555658109466*a(n-23) -337785457906071*a(n-24) +667877163621548*a(n-25) +51130515043723*a(n-26) -819092825116086*a(n-27) +288447456035056*a(n-28) +623846568417000*a(n-29) -349481101559952*a(n-30) -250500894094540*a(n-31) +143930821969264*a(n-32) +59962044402386*a(n-33) -10651618650630*a(n-34) -25341728141720*a(n-35) +5021619526216*a(n-36) +951607924424*a(n-37) -672240236280*a(n-38) +347138677736*a(n-39) -70314891768*a(n-40) +4321472928*a(n-41) +870029888*a(n-42) -350580992*a(n-43) +45079552*a(n-44)

%e Some solutions for n=1

%e ..1..1..3....1..1..1....2..1..1....1..1..3....1..3..0....1..2..3....1..3..2

%e ..2..3..0....0..0..0....0..0..3....1..1..0....0..3..1....1..2..0....3..2..3

%e ..0..2..3....3..3..1....3..2..3....2..2..0....2..3..1....3..0..1....3..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 25 2013