The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A234380 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with no increasing sequence of length 3 horizontally or diagonally downwards 13

%I #4 Dec 25 2013 09:51:20

%S 16584,406416,372690,9995040,24485940,8280018,245837376,1622352843,

%T 1443868938,183669567,6045322368,107611542837,254778511950,

%U 84764693441,4070647527,148657436928,7134211462374,45066201971526,39700991817357

%N T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with no increasing sequence of length 3 horizontally or diagonally downwards

%C Table starts

%C .......16584..........406416............9995040..............245837376

%C ......372690........24485940.........1622352843...........107611542837

%C .....8280018......1443868938.......254778511950.........45066201971526

%C ...183669567.....84764693441.....39700991817357......18662305835280147

%C ..4070647527...4966249171199...6163727050266589....7686715868506969433

%C .90202925160.290807719744802.955881551862891819.3160465819880176888222

%H R. H. Hardin, <a href="/A234380/b234380.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 19]

%F k=2: [order 55]

%F Empirical for row n:

%F n=1: a(n) = 24*a(n-1) -12*a(n-2) +624*a(n-3) +1056*a(n-4) -8448*a(n-5) -9216*a(n-6)

%F n=2: [order 23]

%F n=3: [order 58]

%e Some solutions for n=1 k=4

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..1..0..0..0..0..0....0..2..0..0..2..0....0..0..0..1..1..0....1..2..2..0..2..2

%e ..1..2..1..2..1..2....1..1..2..0..2..1....1..0..0..0..0..1....0..1..2..2..0..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 25 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 04:14 EDT 2023. Contains 365831 sequences. (Running on oeis4.)