login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X(1+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 14
1

%I #5 Dec 23 2013 20:46:45

%S 604,9076,120838,1709528,23776684,333289866,4661112720,65252337120,

%T 913202183554,12781885209276,178897637723208,2503927583256606,

%U 35045839285941264,490514833684342100,6865426090112847610

%N Number of (n+1)X(1+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 14

%C Column 1 of A234343

%H R. H. Hardin, <a href="/A234338/b234338.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) +100*a(n-2) -657*a(n-3) -3362*a(n-4) +13855*a(n-5) +47579*a(n-6) -118877*a(n-7) -254743*a(n-8) +334913*a(n-9) +167982*a(n-10) -130132*a(n-11) -15912*a(n-12) +10008*a(n-13)

%e Some solutions for n=3

%e ..5..0....2..0....5..5....2..4....7..2....7..0....0..2....3..4....1..0....0..1

%e ..0..2....6..7....7..0....7..2....1..3....3..0....3..7....7..1....5..7....7..2

%e ..2..7....3..0....1..0....0..2....0..7....5..7....0..7....7..0....0..5....0..2

%e ..7..5....6..7....7..7....7..6....2..4....0..0....2..2....5..1....7..5....7..7

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 23 2013