login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X (1+1) 0..3 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings).
1

%I #13 Jun 20 2022 21:33:00

%S 80,432,2368,13056,71936,397056,2188288,12079104,66572288,367472640,

%T 2025275392,11179327488,61613342720,340099792896,1874413748224,

%U 10346585653248,57023799492608,314765950844928,1734789723848704

%N Number of (n+1) X (1+1) 0..3 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings).

%H R. H. Hardin, <a href="/A234326/b234326.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 32*a(n-2) - 48*a(n-4).

%F Empirical g.f.: 16*x*(5 + 27*x - 12*x^2 - 48*x^3) / (1 - 32*x^2 + 48*x^4). - _Colin Barker_, Oct 14 2018

%e Some solutions for n=5:

%e 1 3 3 3 0 1 3 3 1 1 3 2 1 3 1 1 0 1 0 1

%e 2 3 0 1 1 1 1 0 2 1 0 0 0 3 1 2 2 2 0 0

%e 0 0 0 0 1 2 2 2 2 2 3 2 1 3 3 3 2 1 1 0

%e 0 1 2 1 0 0 1 0 1 2 2 2 1 2 1 2 0 0 3 3

%e 0 2 1 1 0 1 2 0 1 3 3 2 0 0 0 0 2 3 2 3

%e 0 3 1 2 2 2 1 0 1 2 0 0 1 0 3 2 2 2 0 2

%Y Column 1 of A234333.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 23 2013