login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234319 Smallest sum of n-th powers of k+1 consecutive positive integers that equals the sum of n-th powers of the next k consecutive integers, or -n if none. 2
0, 3, 25, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = smallest solution to m^n + (m+1)^n + … + (m+k)^n = (m+k+1)^n + (m+k+2)^n + ... + (m+2*k)^n, or -n if no solution.

In 1879 Dostor gave all solutions for n = 2. In particular, a(2) = 25.

In 1906 Collignon proved that no solution exists for n = 3 and 4, so a(3) = -3 and a(4) = -4.

In 2013 Felten and Müller-Stach claimed to prove that no solution exists when n > 2, so if their proof is correct, a(n) = -n for n >= 3.

REFERENCES

Edouard Collignon, Note sur la résolution en entiers de m^2 + (m-r)^2 + … + (m-kr)^2 = (m+r)^2 + ... + (m+kr)^2, Sphinx-Oedipe, 1 (1906-1907), 129-133.

Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.

LINKS

Table of n, a(n) for n=0..54.

L. E. Dickson, History of the Theory of Numbers, II, p. 564.

Simon Felten and Stefan Müller-Stach, A diophantine equation for sums of consecutive like powers, arXiv:1312.5943 [math.NT], Elem. Math., 70 (2015), 117-124. doi: 10.4171/EM/284

Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(0) = A059270(0) = A059255(0).

a(1) = A059270(1) = A230718(1).

a(2) = A059255(2) = A230718(2).

a(n) = -n for n > 2.

G.f.: x*(27*x^3-50*x^2+19*x+3) / (x-1)^2. - Colin Barker, Apr 23 2014

EXAMPLE

m^0 + (m+1)^0 + ... + (m+k)^0 = k+1 > k = (m+k+1)^0 + (m+k+2)^0 + ... + (m+2*k)^0 for m > 0, so a(0) = -0 = 0.

1^1 + 2^1 = 3 = 3^1 is minimal for n = 1, so a(1) = 3.

3^2 + 4^2 = 25 = 5^2 is minimal for n = 2, so a(2) = 25.

MATHEMATICA

CoefficientList[Series[x*(27*x^3 - 50*x^2 + 19*x + 3)/(x - 1)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 21 2014 *)

PROG

(PARI) Vec(x*(27*x^3-50*x^2+19*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Apr 23 2014

CROSSREFS

Cf. A059255, A059270, A222716, A230718.

Sequence in context: A297533 A080202 A300945 * A224873 A085836 A073916

Adjacent sequences:  A234316 A234317 A234318 * A234320 A234321 A234322

KEYWORD

sign,easy

AUTHOR

Jonathan Sondow, Dec 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 01:03 EST 2020. Contains 332028 sequences. (Running on oeis4.)