login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234319
Smallest sum of n-th powers of k+1 consecutive positive integers that equals the sum of n-th powers of the next k consecutive integers, or -n if none.
2
0, 3, 25, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54
OFFSET
0,2
COMMENTS
a(n) is the smallest solution to m^n + (m+1)^n + ... + (m+k)^n = (m+k+1)^n + (m+k+2)^n + ... + (m+2*k)^n, or -n if no solution.
In 1879 Dostor gave all solutions for n = 2. In particular, a(2) = 25.
In 1906 Collignon proved that no solution exists for n = 3 and 4, so a(3) = -3 and a(4) = -4.
In 2013 Felten and Müller-Stach claimed to prove that no solution exists when n > 2, so if their proof is correct, a(n) = -n for n >= 3.
REFERENCES
Edouard Collignon, Note sur la résolution en entiers de m^2 + (m-r)^2 + ... + (m-kr)^2 = (m+r)^2 + ... + (m+kr)^2, Sphinx-Oedipe, 1 (1906-1907), 129-133.
LINKS
L. E. Dickson, History of the Theory of Numbers, II, p. 564.
Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.
Simon Felten and Stefan Müller-Stach, A diophantine equation for sums of consecutive like powers, arXiv:1312.5943 [math.NT], 2013-2015; Elem. Math., 70 (2015), 117-124. doi: 10.4171/EM/284
Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.
FORMULA
a(0) = A059270(0) = A059255(0).
a(1) = A059270(1) = A230718(1).
a(2) = A059255(2) = A230718(2).
a(n) = -n for n > 2.
G.f.: x*(27*x^3-50*x^2+19*x+3) / (x-1)^2. - Colin Barker, Apr 23 2014
EXAMPLE
m^0 + (m+1)^0 + ... + (m+k)^0 = k+1 > k = (m+k+1)^0 + (m+k+2)^0 + ... + (m+2*k)^0 for m > 0, so a(0) = -0 = 0.
1^1 + 2^1 = 3 = 3^1 is minimal for n = 1, so a(1) = 3.
3^2 + 4^2 = 25 = 5^2 is minimal for n = 2, so a(2) = 25.
MATHEMATICA
CoefficientList[Series[x*(27*x^3 - 50*x^2 + 19*x + 3)/(x - 1)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 21 2014 *)
PROG
(PARI) Vec(x*(27*x^3-50*x^2+19*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Apr 23 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Jonathan Sondow, Dec 23 2013
STATUS
approved