OFFSET
0,2
COMMENTS
a(n) is the smallest solution to m^n + (m+1)^n + ... + (m+k)^n = (m+k+1)^n + (m+k+2)^n + ... + (m+2*k)^n, or -n if no solution.
In 1879 Dostor gave all solutions for n = 2. In particular, a(2) = 25.
In 1906 Collignon proved that no solution exists for n = 3 and 4, so a(3) = -3 and a(4) = -4.
In 2013 Felten and Müller-Stach claimed to prove that no solution exists when n > 2, so if their proof is correct, a(n) = -n for n >= 3.
REFERENCES
Edouard Collignon, Note sur la résolution en entiers de m^2 + (m-r)^2 + ... + (m-kr)^2 = (m+r)^2 + ... + (m+kr)^2, Sphinx-Oedipe, 1 (1906-1907), 129-133.
LINKS
L. E. Dickson, History of the Theory of Numbers, II, p. 564.
Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.
Simon Felten and Stefan Müller-Stach, A diophantine equation for sums of consecutive like powers, arXiv:1312.5943 [math.NT], 2013-2015; Elem. Math., 70 (2015), 117-124. doi: 10.4171/EM/284
Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
EXAMPLE
m^0 + (m+1)^0 + ... + (m+k)^0 = k+1 > k = (m+k+1)^0 + (m+k+2)^0 + ... + (m+2*k)^0 for m > 0, so a(0) = -0 = 0.
1^1 + 2^1 = 3 = 3^1 is minimal for n = 1, so a(1) = 3.
3^2 + 4^2 = 25 = 5^2 is minimal for n = 2, so a(2) = 25.
MATHEMATICA
CoefficientList[Series[x*(27*x^3 - 50*x^2 + 19*x + 3)/(x - 1)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 21 2014 *)
PROG
(PARI) Vec(x*(27*x^3-50*x^2+19*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Apr 23 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Jonathan Sondow, Dec 23 2013
STATUS
approved