login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234261 Number of (n+1) X (3+1) 0..2 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant stress 1 X 1 tilings). 1
104, 170, 292, 560, 1100, 2324, 4924, 10988, 24284, 56060, 127132, 300380, 693020, 1664924, 3887644, 9452828, 22260764, 54595100, 129337372, 319132700, 759181340, 1881143324, 4487847964, 11152445468, 26658390044, 66377408540, 158876074012 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 24*a(n-3) + 4*a(n-4) + 36*a(n-5) - 24*a(n-6).

Empirical g.f.: 2*x*(52 - 71*x - 421*x^2 + 580*x^3 + 666*x^4 - 876*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 6*x^2)). - Colin Barker, Oct 14 2018

EXAMPLE

Some solutions for n=5:

..0..0..2..1....1..0..1..1....2..0..2..0....2..0..0..2....0..2..0..2

..2..0..0..1....0..1..0..2....0..0..0..0....2..2..0..0....0..0..0..0

..0..0..2..1....1..0..1..1....2..0..2..0....2..0..0..2....0..2..0..2

..2..0..0..1....0..1..0..2....1..1..1..1....2..2..0..0....2..2..2..2

..0..0..2..1....2..1..2..2....0..2..0..2....2..0..0..2....2..0..2..0

..2..0..0..1....0..1..0..2....1..1..1..1....2..2..0..0....0..0..0..0

CROSSREFS

Column 3 of A234266.

Sequence in context: A253693 A168528 A259767 * A260288 A044336 A044717

Adjacent sequences:  A234258 A234259 A234260 * A234262 A234263 A234264

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 19:47 EDT 2021. Contains 343746 sequences. (Running on oeis4.)