%I #4 Dec 21 2013 09:30:30
%S 72,308,308,1248,1540,1248,5344,7348,7348,5344,21888,38424,40384,
%T 38424,21888,93760,190188,257116,257116,190188,93760,385536,1029224,
%U 1493960,2047712,1493960,1029224,385536,1651712,5219076,10151836,14743812
%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11 (11 maximizes T(1,1))
%C Table starts
%C .......72.......308........1248.........5344..........21888...........93760
%C ......308......1540........7348........38424.........190188.........1029224
%C .....1248......7348.......40384.......257116........1493960........10151836
%C .....5344.....38424......257116......2047712.......14743812.......128575264
%C ....21888....190188.....1493960.....14743812......125726800......1394066584
%C ....93760...1029224....10151836....128575264.....1394066584.....20127064876
%C ...385536...5219076....61124816....972664988....12541330624....232097384988
%C ..1651712..28931288...436731604...9139171016...154402398572...3785005344428
%C ..6801408.148987468..2691478528..71474160448..1438786785176..45442038074040
%C .29139968.838864504.19921334892.709190594872.19244558737744.819238398602984
%H R. H. Hardin, <a href="/A234217/b234217.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = 24*a(n-2) -112*a(n-4)
%F k=2: [order 15]
%F k=3: [order 56]
%e Some solutions for n=3 k=4
%e ..1..0..1..0..2....0..1..0..2..1....0..2..2..0..0....0..2..3..2..0
%e ..2..0..2..2..1....0..2..0..1..3....1..0..1..2..1....0..1..1..1..2
%e ..1..0..1..0..0....2..1..2..2..3....2..2..0..2..0....0..2..3..2..0
%e ..0..2..2..2..1....3..1..3..4..2....0..1..2..1..0....1..2..4..2..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 21 2013