login
T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with every 2X2 subblock having the absolute values of all six edge and diagonal differences no larger than 1
9

%I #4 Dec 20 2013 09:58:08

%S 76,388,388,1978,3908,1978,10120,39098,39098,10120,51886,392664,

%T 771710,392664,51886,266434,3949718,15322566,15322566,3949718,266434,

%U 1369642,39781838,304760768,604124712,304760768,39781838,1369642,7046416

%N T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with every 2X2 subblock having the absolute values of all six edge and diagonal differences no larger than 1

%C Table starts

%C .....76......388.......1978........10120...........51886............266434

%C ....388.....3908......39098.......392664.........3949718..........39781838

%C ...1978....39098.....771710.....15322566.......304760768........6069161546

%C ..10120...392664...15322566....604124712.....23888919458......946183426722

%C ..51886..3949718..304760768..23888919458...1881935211706...148632892397508

%C .266434.39781838.6069161546.946183426722.148632892397508.23438907703606286

%H R. H. Hardin, <a href="/A234184/b234184.txt">Table of n, a(n) for n = 1..180</a>

%F Empirical for column k:

%F k=1: a(n) = 10*a(n-1) -27*a(n-2) +3*a(n-3) +36*a(n-4) +12*a(n-5)

%F k=2: [order 11]

%F k=3: [order 22]

%F k=4: [order 60]

%e Some solutions for n=2 k=4

%e ..0..0..1..2..2....1..0..1..0..0....1..0..1..0..1....1..2..1..2..2

%e ..0..1..1..1..1....1..1..1..1..1....1..1..0..1..1....1..1..2..1..1

%e ..1..0..1..1..1....0..1..1..2..1....0..1..1..1..1....0..1..2..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 20 2013