login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X (2+1) 0..5 arrays with every 2 X 2 subblock having the sum of the absolute values of the edge differences equal to 10 and no adjacent elements equal.
1

%I #6 May 09 2021 20:40:15

%S 1264,13936,158812,1920340,23565328,292681764,3649331396,45615539600,

%T 570694277160,7143825942232,89442049322768,1119974200114072,

%U 14024590625718520,175625103897490080,2199303275432206652

%N Number of (n+1) X (2+1) 0..5 arrays with every 2 X 2 subblock having the sum of the absolute values of the edge differences equal to 10 and no adjacent elements equal.

%C Column 2 of A234152.

%H R. H. Hardin, <a href="/A234147/b234147.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) +188*a(n-2) -1705*a(n-3) -13231*a(n-4) +115068*a(n-5) +493976*a(n-6) -4229448*a(n-7) -11190946*a(n-8) +96334439*a(n-9) +164224925*a(n-10) -1453766839*a(n-11) -1614673985*a(n-12) +15099553644*a(n-13) +10806854528*a(n-14) -110319519409*a(n-15) -49482794946*a(n-16) +573293794815*a(n-17) +155510560962*a(n-18) -2125916423322*a(n-19) -344648421788*a(n-20) +5607869207405*a(n-21) +602950452380*a(n-22) -10426809489560*a(n-23) -1017179390188*a(n-24) +13440589196562*a(n-25) +1660271297890*a(n-26) -11680287015490*a(n-27) -2067440715994*a(n-28) +6524300789888*a(n-29) +1631686761052*a(n-30) -2149016060048*a(n-31) -727542691768*a(n-32) +347865584016*a(n-33) +160185863728*a(n-34) -13689852000*a(n-35) -13226096640*a(n-36) -1457602560*a(n-37)

%e Some solutions for n=3

%e ..5..2..0....2..5..3....3..5..3....2..0..3....3..5..3....0..1..3....2..0..2

%e ..3..5..3....0..2..0....0..4..0....5..4..2....5..2..5....5..3..0....3..5..4

%e ..0..3..0....1..5..3....3..5..3....3..0..3....2..0..2....2..0..2....5..2..0

%e ..4..5..1....0..3..0....0..2..0....5..4..2....4..5..4....5..1..5....2..4..5

%Y Cf. A234152.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 20 2013