Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 13 2018 11:53:11
%S 1280,1544,1992,2984,4904,9512,19368,45224,104360,271784,670632,
%T 1861544,4764584,13716392,35808168,105157544,277398440,823206824,
%U 2183234472,6513902504,17322673064,51825116072,138009772968,413458301864
%N Number of (n+1) X (5+1) 0..3 arrays with every 2 X 2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 9.
%H R. H. Hardin, <a href="/A234137/b234137.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) + 8*a(n-2) - 30*a(n-3) + 4*a(n-4) + 48*a(n-5) - 32*a(n-6).
%F Empirical g.f.: 8*x*(160 - 287*x - 1610*x^2 + 2882*x^3 + 2652*x^4 - 4616*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 8*x^2)). - _Colin Barker_, Oct 13 2018
%e Some solutions for n=5:
%e 3 3 3 0 0 3 3 0 3 3 3 3 0 3 0 3 0 3 3 0 3 0 3 0
%e 3 0 3 3 0 0 0 0 0 3 0 3 0 0 0 0 0 0 1 1 1 1 1 1
%e 3 3 3 0 0 3 0 3 0 0 0 0 0 3 0 3 0 3 0 3 0 3 0 3
%e 3 0 3 3 0 0 0 0 0 3 0 3 2 2 2 2 2 2 0 0 0 0 0 0
%e 3 3 3 0 0 3 0 3 0 0 0 0 0 3 0 3 0 3 3 0 3 0 3 0
%e 3 0 3 3 0 0 0 0 0 3 0 3 1 1 1 1 1 1 3 3 3 3 3 3
%Y Column 5 of A234140.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 19 2013