login
A234114
T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 12
9
56, 186, 186, 604, 608, 604, 2064, 2086, 2086, 2064, 6964, 7742, 7732, 7742, 6964, 24156, 29278, 31740, 31740, 29278, 24156, 83012, 113666, 133592, 151304, 133592, 113666, 83012, 290164, 446590, 581756, 738628, 738628, 581756, 446590, 290164
OFFSET
1,1
COMMENTS
Table starts
......56......186.......604.......2064........6964........24156.........83012
.....186......608......2086.......7742.......29278.......113666........446590
.....604.....2086......7732......31740......133592.......581756.......2579864
....2064.....7742.....31740.....151304......738628......3840512......20547980
....6964....29278....133592.....738628.....4093912.....24612244.....150134376
...24156...113666....581756....3840512....24612244....178269116....1293718300
...83012...446590...2579864...20547980...150134376...1293718300...10603143992
..290164..1777146..11668144..114726620...965407560..10243412736...97572997380
.1007972..7128062..53568572..659505140..6359501076..83539101944..892457433308
.3540836.28800050.249460672.3907997608.43513496776.726030071196.8881590361884
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) +6*a(n-2) -50*a(n-3) +16*a(n-4) +80*a(n-5) -16*a(n-6)
k=2: [order 18]
k=3: [order 40]
k=4: [order 96]
EXAMPLE
Some solutions for n=4 k=4
..3..3..4..3..4....3..3..3..0..3....1..0..1..1..4....0..4..0..4..4
..4..0..3..0..3....4..0..0..3..4....4..1..4..0..1....1..1..1..1..1
..0..0..3..0..3....3..3..3..0..3....1..4..1..1..4....0..4..0..4..0
..0..4..3..4..3....0..4..0..3..0....0..1..4..0..1....0..0..0..0..0
..3..3..0..3..0....4..4..4..3..4....1..4..1..1..4....3..3..3..3..3
CROSSREFS
Sequence in context: A225358 A115620 A224108 * A234107 A136547 A264303
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 19 2013
STATUS
approved