login
Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 12
1

%I #4 Dec 19 2013 16:23:00

%S 186,608,2086,7742,29278,113666,446590,1777146,7128062,28800050,

%T 116956694,477079450,1952467246,8013263810,32960180670,135831293266,

%U 560640193430,2317207177362,9588529183750,39718769341930,164680552349318

%N Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 12

%C Column 2 of A234114

%H R. H. Hardin, <a href="/A234108/b234108.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) +6*a(n-2) -172*a(n-3) +144*a(n-4) +1438*a(n-5) -1805*a(n-6) -6160*a(n-7) +8467*a(n-8) +14464*a(n-9) -20123*a(n-10) -17822*a(n-11) +25464*a(n-12) +9216*a(n-13) -15948*a(n-14) +136*a(n-15) +3552*a(n-16) -928*a(n-17) +64*a(n-18)

%e Some solutions for n=5

%e ..4..0..4....0..0..0....3..0..3....4..1..4....4..1..4....1..4..1....3..0..4

%e ..1..1..1....3..3..3....4..3..0....1..4..1....4..1..0....1..0..1....3..4..4

%e ..4..0..4....0..0..0....3..0..3....0..1..0....4..1..4....4..1..4....3..0..4

%e ..3..3..3....4..0..4....3..4..3....1..4..1....4..1..0....0..1..4....3..0..0

%e ..4..0..4....0..0..0....3..0..3....0..1..4....1..4..1....1..4..1....3..0..4

%e ..2..2..2....3..3..3....0..3..4....1..4..1....1..4..1....1..0..1....4..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 19 2013