login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form (p*q*r + 1)/2, where p, q, r are distinct primes.
5

%I #12 Jan 29 2023 14:56:28

%S 53,83,137,173,179,193,233,281,353,389,431,443,449,479,503,523,557,

%T 587,593,641,677,773,823,827,839,853,953,983,1019,1033,1061,1093,1097,

%U 1117,1151,1187,1223,1277,1307,1433,1439,1453,1493,1511,1579,1583,1601,1619

%N Primes of the form (p*q*r + 1)/2, where p, q, r are distinct primes.

%H Robert Israel, <a href="/A234104/b234104.txt">Table of n, a(n) for n = 1..10000</a>

%e (3*5*7 + 1)/2 = 53.

%p filter:= proc(n) local s;

%p if not isprime(n) then return false fi;

%p s:= ifactors(2*n-1)[2];

%p nops(s)=3 and map(t -> t[2],s)=[1,1,1]

%p end proc:

%p select(filter, [seq(i,i=3..1619,2)]); # _Robert Israel_, May 11 2020

%t t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *)

%t v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234103 *)

%t (w + 1)/2 (* A234104 *) (* _Peter J. C. Moses_, Dec 23 2013 *)

%t Module[{nn=100},Select[(Times@@#+1)/2&/@Subsets[Prime[Range[nn]],{3}],PrimeQ[ #] && #<=5*Prime[nn]&]]//Union (* _Harvey P. Dale_, Jan 29 2023 *)

%Y Cf. A234102, A234103, A234101.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Dec 27 2013