Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:46:06
%S 7,17,19,43,47,59,61,71,79,101,107,109,149,151,163,167,197,223,257,
%T 263,271,311,317,347,349,353,383,389,401,421,439,449,461,479,503,521,
%U 523,557,569,599,601,613,631,673,677,691,701,811,821,827,839,853,863,881
%N Primes p such that 2*p + 1 is semiprime.
%C Also primes of the form (p*q - 1)/2, where p and q are distinct primes.
%H Harvey P. Dale, <a href="/A234095/b234095.txt">Table of n, a(n) for n = 1..1000</a>
%F 2*a(n)+1 = A233561(n). - _R. J. Mathar_, Aug 30 2016
%e 7 is in the sequence because it is prime and 7*2 + 1 = 15 = 3*5 is a semiprime.
%t t = Select[Range[1, 7000, 2], Map[Last, FactorInteger[#]] == Table[1, {2}] &]; Take[(t - 1)/2, 120] (* A234093 *)
%t v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A233561 *)
%t (w - 1)/2 (* A234095 *) (* _Peter J. C. Moses_, Dec 23 2013 *)
%t Select[Prime[Range[200]],PrimeOmega[2#+1]==2&] (* _Harvey P. Dale_, Mar 19 2015 *)
%o (PARI) is(n)=isprime(n) && bigomega(2*n+1)==2 \\ _Charles R Greathouse IV_, Feb 19 2014
%o (Magma) IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(1000)| IsSemiprime(2*p+1)]; // _Vincenzo Librandi_, Feb 21 2014
%Y Cf. A233561, A234096, A233562.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Dec 27 2013
%E New name from _Zak Seidov_, Feb 19 2014