%I #10 Jan 18 2014 16:23:53
%S 1,2,2,2,2,3,2,2,3,2,3,2,2,3,3,3,3,3,2,2,3,3,3,2,4,3,2,3,3,2,2,3,3,3,
%T 3,4,3,3,3,4,3,3,3,3,2,2,3,3,3,3,4,3,2,4,3,4,3,3,3,4,4,3,2,3,3,3,2,2,
%U 3,3,3,3,4,3,3,4,3,4,3,3,4,4,4,4,3,2
%N Limit of v(m,n) as m>oo, where v(m,n) is the number of distinct terms in the nth partition of m in Mathematica (lexicographic) ordering of the partitions of m.
%C Limiting row of A115623.
%e In Mathematica ordering, the 9th partition of n >= 8 is [n4,3,1]. Thus, v(n,9) = 3 for n all n >= 8, so a(n) = 3.
%t Table[Length[Union[IntegerPartitions[40][[k]]]], {k, 1, 150}]
%Y Cf. A115623.
%K nonn
%O 1,2
%A _Clark Kimberling_, Dec 26 2013
