login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally or diagonally downwards
15

%I #4 Dec 19 2013 06:40:12

%S 205808,10268904,11758836,502595832,2080660489,671548560,24576912260,

%T 357463146593,421353160493,38351813588,1199897571228,61295636223137,

%U 253278425289056,85328128508052,2190245258368,58576345841356

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally or diagonally downwards

%C Table starts

%C ........205808..........10268904.............502595832..............24576912260

%C ......11758836........2080660489..........357463146593...........61295636223137

%C .....671548560......421353160493.......253278425289056.......151699488521954708

%C ...38351813588....85328128508052....179447238884491424....375374879187809108516

%C .2190245258368.17279764673423169.127129186239945486040.928769780045181953374609

%H R. H. Hardin, <a href="/A234068/b234068.txt">Table of n, a(n) for n = 1..111</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 7]

%F k=2: [order 14]

%F k=3: [order 26]

%F Empirical for row n:

%F n=1: [linear recurrence of order 54]

%e Some solutions for n=1 k=4

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..0..0..1..0....0..0..1..1..2..0....0..0..1..0..1..1....0..0..0..1..0..1

%e ..2..2..1..1..2..1....2..2..3..1..0..0....1..1..2..1..3..1....1..3..1..1..0..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 19 2013