|
|
A233960
|
|
Number of (n+1) X (1+1) 0..3 arrays with every 2 X 2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10.
|
|
1
|
|
|
48, 188, 728, 3016, 12416, 52880, 224288, 966496, 4154112, 17982656, 77729664, 337053824, 1460367360, 6336344320, 27480998400, 119261455872, 517457334272, 2245803076608, 9745906759680, 42298798098432, 183573873852416
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) + 10*a(n-2) - 36*a(n-3) - 8*a(n-4) + 16*a(n-5).
Empirical g.f.: 4*x*(12 - x - 126*x^2 - 12*x^3 + 56*x^4) / ((1 - 2*x - 2*x^2)*(1 - 2*x - 12*x^2 + 8*x^3)). - Colin Barker, Oct 12 2018
|
|
EXAMPLE
|
Some solutions for n=5:
..1..2....1..0....1..0....3..2....1..0....0..3....1..2....1..2....3..3....0..1
..0..3....3..2....3..0....3..0....3..2....1..2....3..0....3..0....2..0....3..0
..1..2....0..3....3..2....3..2....0..1....0..3....3..2....3..2....1..3....2..3
..3..0....1..2....3..0....0..3....0..3....1..0....1..0....0..1....0..0....0..3
..2..3....0..3....2..1....0..1....3..2....3..0....3..0....0..3....3..1....3..2
..1..0....2..3....3..0....0..3....1..0....2..3....1..0....2..3....0..0....0..3
|
|
CROSSREFS
|
Column 1 of A233967.
Sequence in context: A233792 A233967 A233785 * A210250 A259038 A231174
Adjacent sequences: A233957 A233958 A233959 * A233961 A233962 A233963
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Dec 18 2013
|
|
STATUS
|
approved
|
|
|
|