login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233953
Number of (n+1)X(3+1) 0..5 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 10, and no two adjacent values equal
1
1776, 20616, 238800, 2805732, 32938264, 387379488, 4554084512, 53556471248, 629746787804, 7405534639216, 87082117502584, 1024028786411432, 12041751120851748, 141602350814970496, 1665134904378835048
OFFSET
1,1
COMMENTS
Column 3 of A233958
LINKS
FORMULA
Empirical: a(n) = 10*a(n-1) +206*a(n-2) -1974*a(n-3) -17658*a(n-4) +172006*a(n-5) +823218*a(n-6) -8755950*a(n-7) -22447964*a(n-8) +290331225*a(n-9) +335340549*a(n-10) -6620509403*a(n-11) -1129180909*a(n-12) +106892209217*a(n-13) -61125364955*a(n-14) -1239668100020*a(n-15) +1464086615509*a(n-16) +10358200949139*a(n-17) -18063939217024*a(n-18) -61734170536425*a(n-19) +146014464495890*a(n-20) +253673952282616*a(n-21) -825629122879556*a(n-22) -647362175538384*a(n-23) +3342376565187184*a(n-24) +566558281284436*a(n-25) -9724628758424336*a(n-26) +2629158173196324*a(n-27) +20109448606399920*a(n-28) -12570237040208256*a(n-29) -28672753664086816*a(n-30) +27753562260435776*a(n-31) +26303535277229760*a(n-32) -37392616983493824*a(n-33) -12637279427092736*a(n-34) +31789181667627520*a(n-35) -448199782440960*a(n-36) -16359189473893376*a(n-37) +4114097577508864*a(n-38) +4462518392578048*a(n-39) -2023269312528384*a(n-40) -396341235515392*a(n-41) +337927810580480*a(n-42) -37006957084672*a(n-43) -5076173193216*a(n-44) +713606299648*a(n-45)
EXAMPLE
Some solutions for n=2
..5..3..5..3....1..0..2..0....2..4..3..1....1..3..2..1....4..5..4..3
..3..2..3..4....3..2..3..1....1..2..1..0....0..2..0..2....2..3..2..1
..5..4..5..3....1..0..2..3....3..4..3..1....2..3..1..3....4..2..0..2
CROSSREFS
Sequence in context: A143995 A205938 A238307 * A282404 A167282 A237906
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 18 2013
STATUS
approved