%I #5 Dec 18 2013 05:57:42
%S 312,1996,12880,88572,609912,4361260,30999664,226112364,1632434488,
%T 12023904092,87476145488,647317646108,4727495091576,35056982203980,
%U 256540627260976,1904048129719436,13948922790405176,103557690225690108
%N Number of (n+1)X(1+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 16
%C Column 1 of A233939
%H R. H. Hardin, <a href="/A233934/b233934.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 10*a(n-1) +56*a(n-2) -828*a(n-3) +457*a(n-4) +18458*a(n-5) -42836*a(n-6) -129360*a(n-7) +480656*a(n-8) +107168*a(n-9) -1616128*a(n-10) +780160*a(n-11) +1960960*a(n-12) -1441792*a(n-13) -809984*a(n-14) +628736*a(n-15) +122880*a(n-16) -65536*a(n-17)
%e Some solutions for n=4
%e ..2..3....6..1....2..3....6..6....5..0....5..7....2..7....3..4....2..7....5..6
%e ..6..1....6..5....5..0....1..5....3..2....2..6....5..6....6..1....5..6....4..1
%e ..2..1....2..7....1..0....0..0....7..2....1..3....6..1....2..3....6..1....5..6
%e ..3..6....3..2....5..0....5..1....5..4....2..6....3..2....5..0....3..2....1..4
%e ..2..1....5..0....4..5....5..1....7..2....2..6....7..4....0..1....7..2....5..6
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2013