login
A233933
Smallest number k such that R(n) is the n-th divisor of k, where R(n) is the n-th Ramanujan prime (A104272).
0
11, 34, 116, 246, 752, 708, 4288, 1704, 3492, 4848, 11556, 7620, 28608, 47112, 24048, 21480, 45612, 40860, 54960, 218088, 180684, 121464, 94680, 242100, 269760, 486288, 313488, 249840, 376920, 308280, 738540, 721800, 515340, 1106160, 930960, 935280, 737520
OFFSET
2,1
EXAMPLE
a(2) = 11 because the divisors of 11 are {1, 11}, and the 2nd divisor of 11 is 11 = A104272(2);
a(3) = 34 because the divisors of 34 are {1, 2, 17, 34}, and the 3rd divisor of 34 is 17 = A104272(3).
MATHEMATICA
nn=20; R=Table[0, {nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, R[[s+1]]=k], {k, Prime[3*nn]}]; R=R+1; t=Table[0, {nn}]; found=1; n=2; While[found < nn, n++; d=Divisors[n]; Do[If[i <= nn && d[[i]] == Part[R, i] && t[[i]]==0, t[[i]]=n; found++], {i, Length[d]}]]; Rest[t] (* Program from T. D. Noe adapted for this sequence - see A104272 and A221647 *)
CROSSREFS
Sequence in context: A103661 A300418 A041539 * A041232 A050287 A096762
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 18 2013
STATUS
approved