login
Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 8 and no adjacent elements equal
1

%I #4 Dec 17 2013 20:24:12

%S 518,4010,32496,273318,2325194,19931860,171250610,1473829746,

%T 12688761848,109290581878,941343044618,8109173389480,69853473771318,

%U 601763613815098,5183825786212584,44656817891108482,384695282287859174

%N Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of the edge differences equal to 8 and no adjacent elements equal

%C Column 2 of A233928

%H R. H. Hardin, <a href="/A233922/b233922.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +90*a(n-2) -457*a(n-3) -2820*a(n-4) +12576*a(n-5) +44887*a(n-6) -174476*a(n-7) -413814*a(n-8) +1377015*a(n-9) +2340346*a(n-10) -6484142*a(n-11) -8332941*a(n-12) +18412719*a(n-13) +18808062*a(n-14) -31000755*a(n-15) -26671104*a(n-16) +29467485*a(n-17) +23060177*a(n-18) -14245792*a(n-19) -11289280*a(n-20) +2644752*a(n-21) +2672572*a(n-22) +58840*a(n-23) -200640*a(n-24) -28672*a(n-25)

%e Some solutions for n=3

%e ..2..1..0....3..0..3....1..0..1....4..2..4....2..4..1....3..1..0....0..1..0

%e ..1..4..3....4..1..4....4..3..0....1..0..2....0..3..4....2..4..2....1..4..2

%e ..0..1..4....3..0..3....3..0..1....4..3..4....1..4..1....3..1..3....0..2..4

%e ..2..4..3....4..2..1....2..3..0....1..4..1....4..3..4....4..0..4....2..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2013