login
Number of (n+1)X(2+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 35
1

%I #4 Dec 17 2013 12:27:36

%S 656,2944,12152,62064,278416,1521520,7123728,40312912,192972032,

%T 1110694824,5379964888,31200431816,152157236872,884893854040,

%U 4334249058400,25217788360240,123909677614064,720428921323016

%N Number of (n+1)X(2+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 35

%C Column 2 of A233903

%H R. H. Hardin, <a href="/A233898/b233898.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +100*a(n-2) -653*a(n-3) -3922*a(n-4) +29350*a(n-5) +75333*a(n-6) -716686*a(n-7) -663724*a(n-8) +10557778*a(n-9) -189287*a(n-10) -98135157*a(n-11) +62654351*a(n-12) +580526450*a(n-13) -642463362*a(n-14) -2125031984*a(n-15) +3275337984*a(n-16) +4379131280*a(n-17) -9343912016*a(n-18) -3557715392*a(n-19) +14269816000*a(n-20) -2397660416*a(n-21) -9497517824*a(n-22) +4983344128*a(n-23) +925209600*a(n-24) -965386240*a(n-25) +130457600*a(n-26)

%e Some solutions for n=4

%e ..6..4..0....6..3..0....1..4..6....4..5..4....6..2..0....4..2..4....3..4..6

%e ..3..2..3....4..2..4....0..2..5....2..6..2....4..3..4....5..6..3....0..2..3

%e ..1..5..1....6..5..6....3..4..6....4..5..4....0..2..6....4..2..4....3..4..6

%e ..3..4..3....4..2..4....6..2..3....6..2..6....4..3..4....3..0..1....0..2..5

%e ..5..1..5....0..3..6....5..4..0....5..4..5....0..2..0....4..2..4....1..4..6

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2013