login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(2+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 30, and no two adjacent values equal
1

%I #4 Dec 17 2013 07:31:44

%S 384,1960,9376,47732,233468,1183328,5829956,29477912,145866316,

%T 736514180,3656220328,18445344136,91795812176,462850707208,

%U 2308053143992,11633489168304,58106230865268,292809287700868,1464472038952276

%N Number of (n+1)X(2+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 30, and no two adjacent values equal

%C Column 2 of A233892

%H R. H. Hardin, <a href="/A233886/b233886.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +72*a(n-2) -278*a(n-3) -2093*a(n-4) +7846*a(n-5) +31943*a(n-6) -118256*a(n-7) -280293*a(n-8) +1059474*a(n-9) +1464690*a(n-10) -5968574*a(n-11) -4541666*a(n-12) +21819710*a(n-13) +7753185*a(n-14) -52635660*a(n-15) -4645134*a(n-16) +84280382*a(n-17) -7066733*a(n-18) -89291380*a(n-19) +16609381*a(n-20) +61880902*a(n-21) -14399047*a(n-22) -27456604*a(n-23) +6388152*a(n-24) +7484866*a(n-25) -1438992*a(n-26) -1148164*a(n-27) +135572*a(n-28) +79124*a(n-29) -1776*a(n-30) -736*a(n-31) +32*a(n-32)

%e Some solutions for n=4

%e ..1..0..1....0..2..6....1..5..1....4..1..0....5..6..5....2..6..2....0..1..3

%e ..5..2..5....4..1..4....0..3..4....3..5..3....1..4..1....4..3..4....3..5..2

%e ..4..0..4....3..5..6....1..5..1....4..1..4....5..3..5....2..6..2....4..1..3

%e ..1..2..1....0..1..3....3..2..0....6..2..0....1..4..1....1..3..4....3..5..6

%e ..4..0..4....2..5..6....1..5..4....4..1..4....2..6..2....2..6..2....4..1..4

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2013