login
T(n,k)=Number of (n+1)X(k+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 21
7

%I #4 Dec 17 2013 06:22:07

%S 224,1176,1176,5984,5404,5984,34416,26488,26488,34416,189632,155104,

%T 139880,155104,189632,1128928,909408,907940,907940,909408,1128928,

%U 6414208,5878272,6146640,6887232,6146640,5878272,6414208,38622656

%N T(n,k)=Number of (n+1)X(k+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 21

%C Table starts

%C ........224........1176.........5984........34416........189632.......1128928

%C .......1176........5404........26488.......155104........909408.......5878272

%C .......5984.......26488.......139880.......907940.......6146640......46051092

%C ......34416......155104.......907940......6887232......57147272.....530983144

%C .....189632......909408......6146640.....57147272.....608085728....7353231356

%C ....1128928.....5878272.....46051092....530983144....7353231356..117645672328

%C ....6414208....36964980....343425768...5012939992...91827779048.1973200783776

%C ...38622656...249710396...2756337624..50952500976.1235220618536

%C ..222041856..1622032500..21588683624.512188465988

%C .1341849472.11215026376.180216035036

%H R. H. Hardin, <a href="/A233875/b233875.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 14]

%F k=2: [order 71]

%e Some solutions for n=3 k=4

%e ..0..7..7..7..6....0..4..1..4..7....0..1..1..7..1....0..3..0..7..1

%e ..0..0..7..0..6....4..7..1..7..1....1..7..4..1..0....0..6..6..6..3

%e ..7..0..0..0..3....7..1..4..1..4....4..7..1..7..1....3..0..3..0..6

%e ..3..3..6..3..7....4..1..7..7..1....1..1..0..1..0....6..6..6..6..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 17 2013