login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(1+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 21
1

%I #5 Dec 17 2013 06:12:15

%S 224,1176,5984,34416,189632,1128928,6414208,38622656,222041856,

%T 1341849472,7749914112,46887986944,271306185728,1642034355712,

%U 9508544919552,57555613998080,333396836184064,2018143397804032

%N Number of (n+1)X(1+1) 0..7 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 21

%C Column 1 of A233875

%H R. H. Hardin, <a href="/A233869/b233869.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +72*a(n-2) -136*a(n-3) -1764*a(n-4) +2984*a(n-5) +18928*a(n-6) -25920*a(n-7) -92800*a(n-8) +81920*a(n-9) +204800*a(n-10) -81920*a(n-11) -172032*a(n-12) +16384*a(n-13) +32768*a(n-14)

%e Some solutions for n=5

%e ..0..6....0..1....0..6....6..6....6..3....0..7....2..5....6..0....0..7....4..1

%e ..6..7....1..7....3..0....0..3....0..6....3..3....7..1....4..1....1..1....7..1

%e ..0..6....6..3....6..0....3..7....5..2....7..0....6..3....7..7....0..7....2..5

%e ..3..0....6..0....3..6....3..0....6..0....7..7....1..7....4..1....6..6....7..1

%e ..6..0....0..3....0..6....0..6....6..7....7..0....2..5....6..0....7..0....0..1

%e ..1..4....6..6....7..6....3..6....6..0....2..2....1..7....3..0....4..4....7..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2013