login
Least prime in arithmetic progression of consecutive primes 6^n+k, 6^n+k+g, 6^n+k+2*g with smallest k.
0

%I #4 Dec 17 2013 03:59:01

%S 47,251,1361,7817,46877,280591,1680131,10077959,60470441,362797949,

%T 2176786421,13060695047,78364167257,470184984721,2821109908277,

%U 16926659446819,101559956670517,609359740010929,3656158440066719,21936950640380099,131621703842267647,789730223053605439

%N Least prime in arithmetic progression of consecutive primes 6^n+k, 6^n+k+g, 6^n+k+2*g with smallest k.

%C No solution for n = 1, so sequence starts at n = 2.

%C The primes are probable primes for n > 23.

%F a(n) = 6^n + A233546(n).

%e a(2) = 6^2 + A233546(2) = 36 + 11 = 47.

%Y Cf. A233546 (values of k), A233550 (values of g), A233742 (= g/6).

%K nonn

%O 2,1

%A _Jonathan Sondow_, Dec 16 2013