%I #4 Dec 15 2013 20:45:57
%S 188,864,3932,19396,93100,479628,2368972,12497004,62641260,334456748,
%T 1688689644,9069659180,45953746604,247510078252,1256167155500,
%U 6774945913516,34411551292588,185712460447404,943631404857772
%N Number of (n+1)X(2+1) 0..3 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11
%C Column 2 of A233792
%H R. H. Hardin, <a href="/A233786/b233786.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +34*a(n-2) -196*a(n-3) -148*a(n-4) +1770*a(n-5) -1056*a(n-6) -4344*a(n-7) +5088*a(n-8) +864*a(n-9) -2880*a(n-10) +864*a(n-11)
%e Some solutions for n=5
%e ..0..1..3....0..1..2....2..0..2....3..3..1....0..2..3....3..2..1....2..1..0
%e ..2..2..1....2..0..2....2..1..2....2..1..2....2..1..1....1..3..1....0..2..2
%e ..1..0..2....1..2..1....2..0..2....3..3..3....1..3..2....2..1..2....0..1..0
%e ..2..0..1....1..3..1....2..1..2....1..2..1....2..3..1....0..2..0....2..0..2
%e ..1..2..2....1..2..1....2..0..2....1..3..3....3..1..2....1..2..1....2..1..2
%e ..0..0..1....2..0..0....1..0..1....3..2..1....2..3..3....3..3..1....0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 15 2013