login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2*binomial(5*n+10, n)/(n+2).
6

%I #30 Nov 22 2024 08:50:47

%S 1,10,95,920,9135,92752,959595,10084360,107375730,1156073100,

%T 12565671261,137702922560,1519842008360,16880051620320,

%U 188519028884675,2115822959020080,23851913523156675,269958280013904870,3066451080298820830,34946186787944832400

%N 2*binomial(5*n+10, n)/(n+2).

%C Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=5, r=10.

%H Vincenzo Librandi, <a href="/A233738/b233738.txt">Table of n, a(n) for n = 0..200</a>

%H J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906 [math.CO], 2007.

%H J-C. Aval, <a href="http://dx.doi.org/10.1016/j.disc.2007.08.100">Multivariate Fuss-Catalan Numbers</a>, Discrete Math., 308 (2008), 4660-4669.

%H Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a>

%H Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955.

%F G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=5, r=10.

%F a(n) = 2*A004344(n)/(n+2). - _Wesley Ivan Hurt_, Sep 07 2014

%F G.f.: hypergeom([2, 11/5, 12/5, 13/5, 14/5], [11/4, 3, 13/4, 7/2], (3125/256)*x). - _Robert Israel_, Sep 07 2014

%F D-finite with recurrence 8*(2*n+5)*(4*n+7)*(n+2)*(4*n+9)*a(n) -(n+1)*(13877*n^3+45630*n^2+46579*n+14034)*a(n-1) +210*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n-2)=0. - _R. J. Mathar_, Nov 22 2024

%F D-finite with recurrence 8*n*(2*n+5)*(4*n+7)*(n+2)*(4*n+9)*a(n) -5*(5*n+6)*(5*n+7)*(5*n+8)*(5*n+9)*(n+1)*a(n-1)=0. - _R. J. Mathar_, Nov 22 2024

%p A233738:=n->2*binomial(5*n+10,n)/(n+2): seq(A233738(n), n=0..30); # _Wesley Ivan Hurt_, Sep 07 2014

%t Table[2 Binomial[5 n + 10, n]/(n + 2), {n, 0, 40}] (* _Vincenzo Librandi_, Dec 16 2013 *)

%o (PARI) a(n) = 2*binomial(5*n+10,n)/(n+2);

%o (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^10+x*O(x^n)); polcoeff(B, n)}

%o (Magma) [2*Binomial(5*n+10, n)/(n+2): n in [0..30]]; // _Vincenzo Librandi_, Dec 16 2013

%Y Cf. A000108, A002294, A004344, A118969, A118971, A143546, A233668, A233669, A233736, A233737.

%K nonn,easy

%O 0,2

%A _Tim Fulford_, Dec 15 2013