Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 14 2013 12:43:10
%S 208,1220,1220,6656,8324,6656,37544,56212,56212,37544,208304,411848,
%T 501200,411848,208304,1166748,3007000,5005852,5005852,3007000,1166748,
%U 6498312,22597004,50997688,71366708,50997688,22597004,6498312,36324956
%N T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 26 (26 maximizes T(1,1))
%C Table starts
%C ........208........1220..........6656..........37544..........208304
%C .......1220........8324.........56212.........411848.........3007000
%C .......6656.......56212........501200........5005852........50997688
%C ......37544......411848.......5005852.......71366708......1053739156
%C .....208304.....3007000......50997688.....1053739156.....23188813328
%C ....1166748....22597004.....538751292....16463908576....545807710584
%C ....6498312...168812492....5717710176...259162493248..13115038989616
%C ...36324956..1277805668...61553770120..4182001054596.323684938848400
%C ..202569936..9619090052..662422496208.67387441794520
%C .1131482016.72923111912.7175663136164
%H R. H. Hardin, <a href="/A233665/b233665.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 13]
%F k=2: [order 74]
%e Some solutions for n=2 k=4
%e ..0..1..4..1..0....1..1..1..1..3....3..4..3..6..5....5..2..2..2..6
%e ..4..1..0..1..4....0..4..0..4..1....3..0..3..2..2....3..5..6..5..6
%e ..0..1..4..1..0....1..4..3..4..5....4..4..3..6..5....0..2..2..2..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 14 2013