login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X(1+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 26
1

%I #5 Dec 14 2013 12:38:40

%S 208,1220,6656,37544,208304,1166748,6498312,36324956,202569936,

%T 1131482016,6313043848,35250544880,196723994080,1098286071192,

%U 6129927083568,34219962715316,191004422241352,1066229169116120

%N Number of (n+1)X(1+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 26

%C Column 1 of A233665

%H R. H. Hardin, <a href="/A233659/b233659.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 44*a(n-2) +30*a(n-3) -597*a(n-4) -498*a(n-5) +3495*a(n-6) +2968*a(n-7) -9305*a(n-8) -7532*a(n-9) +10204*a(n-10) +7424*a(n-11) -3232*a(n-12) -1792*a(n-13)

%e Some solutions for n=4

%e ..3..6....4..6....5..1....3..0....0..3....6..2....4..4....4..6....6..6....6..6

%e ..5..3....6..3....5..2....3..4....4..4....3..2....3..0....6..3....3..2....2..5

%e ..3..6....4..6....5..1....0..0....0..3....6..2....1..3....4..1....6..6....1..1

%e ..1..3....1..3....2..1....1..4....3..1....3..2....4..1....6..4....5..2....5..2

%e ..4..1....4..1....2..5....1..0....0..3....3..6....6..4....3..1....3..0....5..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 14 2013