login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock having the sum of the squares of the edge differences equal to 2.
1

%I #8 Oct 11 2018 09:01:55

%S 24,90,324,1188,4320,15768,57456,209520,763776,2784672,10152000,

%T 37012032,134936064,491944320,1793505024,6538675968,23838382080,

%U 86908819968,316847932416,1155148784640,4211385163776,15353663035392,55975637053440

%N Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock having the sum of the squares of the edge differences equal to 2.

%H R. H. Hardin, <a href="/A233637/b233637.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) + 6*a(n-2).

%F Conjectures from _Colin Barker_, Oct 11 2018: (Start)

%F G.f.: 6*x*(4 + 7*x) / (1 - 2*x - 6*x^2).

%F a(n) = ((1-sqrt(7))^n*(-17+7*sqrt(7)) + (1+sqrt(7))^n*(17+7*sqrt(7))) / (2*sqrt(7)).

%F (End)

%e Some solutions for n=5:

%e ..1..1....1..2....0..1....0..0....1..1....1..0....0..1....1..0....2..2....0..1

%e ..1..2....1..2....0..1....1..0....2..1....1..1....1..1....1..0....2..1....0..1

%e ..1..2....1..2....1..1....1..0....2..1....0..1....0..0....1..1....1..1....0..1

%e ..2..2....2..2....0..1....1..0....2..1....1..1....1..0....2..1....0..1....1..1

%e ..1..1....1..1....1..1....1..0....1..1....0..1....1..1....1..1....1..1....1..0

%e ..2..1....0..0....0..1....1..1....0..0....0..0....0..1....2..2....1..2....1..0

%Y Column 1 of A233644.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 14 2013