Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 14 2013 06:16:42
%S 15272,341849,342185,7655432,20463326,7610545,171455430,1228836823,
%T 1210323458,169129037,3839022704,73856970690,193816724926,71466955645,
%U 3756984641,85958825311,4437742405449,31089670720384,30486088122553
%N T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with no increasing sequence of length 3 horizontally, vertically or antidiagonally downwards
%C Table starts
%C .........15272............341849...............7655432................171455430
%C ........342185..........20463326............1228836823..............73856970690
%C .......7610545........1210323458..........193816724926...........31089670720384
%C .....169129037.......71466955645........30486088122553........13036676136198570
%C ....3756984641.....4216843315070......4789333815748164......5457144376641532163
%C ...83451469774...248776920079071....752211767721347638...2283486525774040837846
%C .1853608731449.14676155317362609.118131715113190354345.955374780755516442029392
%H R. H. Hardin, <a href="/A233602/b233602.txt">Table of n, a(n) for n = 1..143</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 23]
%F Empirical for row n:
%F n=1: [linear recurrence of order 23]
%F n=2: [order 61] for n>62
%e Some solutions for n=1 k=4
%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
%e ..0..0..2..2..0..2....1..2..2..0..2..0....0..2..0..2..2..2....1..0..0..0..0..0
%e ..0..1..1..2..2..2....1..1..0..0..0..1....1..0..0..1..1..1....1..2..0..1..0..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 14 2013