Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Dec 14 2013 20:01:34
%S 1,5,23,151,1199,9567,76543,1125119,17978879,287659519,4602550271,
%T 73629609983,1178073743359,18849179828223,301586877251583,
%U 9308786131992575,297840749160955903,9530903606625042431,304988913945966280703,9759645240406772285439
%N a(n) is number in A114994 which c-equivalent to c-factorial of n (A047778).
%C Two numbers n_1 and n_2 are called c-equivalent (n_1~n_2) if in binary they have the same parts of the form 10...0 with k>=0 zeros up to a permutation of them. For example, 6~5, 14~13~11, 12~9.
%e A047778(4)=220 which has parts (1)(10)(1)(1)(100)~(100)(10)(1)(1)(1) which is 151 in decimal. So, a(4)=151.
%t bitPatt[n_]:=bitPatt[n]=Split[IntegerDigits[n,2],#1>#2||#2==0&];Map[FromDigits[Flatten[Reverse[Sort[bitPatt[FromDigits[Flatten[Map[IntegerDigits[#,2]&,Range[#]]],2]]]]],2]&,Range[20]] (* _Peter J. C. Moses_, Dec 14 2013 *)
%K nonn
%O 1,2
%A _Vladimir Shevelev_, Dec 13 2013