login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally, diagonally downwards or vertically
6

%I #4 Dec 11 2013 08:22:27

%S 172952,8254896,8254896,386906152,1328621536,386906152,18116531520,

%T 208066125583,208066125583,18116531520,846914338316,32519299606118,

%U 107592918949238,32519299606118,846914338316,39587056212137

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally, diagonally downwards or vertically

%C Table starts

%C .......172952..........8254896............386906152..............18116531520

%C ......8254896.......1328621536.........208066125583...........32519299606118

%C ....386906152.....208066125583......107592918949238........55442546308058920

%C ..18116531520...32519299606118....55442546308058920.....94038386779753884364

%C .846914338316.5070020645309648.28457838067515915868.158651203925316697808911

%H R. H. Hardin, <a href="/A233488/b233488.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 60]

%e Some solutions for n=1 k=4

%e ..1..1..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..2..1..0..0..0..0....2..3..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0

%e ..2..1..3..3..1..1....2..3..2..3..2..3....0..3..2..2..0..0....2..3..1..3..2..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 11 2013