login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233471
a(n) = 3^n mod n^2.
3
0, 1, 0, 1, 18, 9, 31, 33, 0, 49, 3, 81, 146, 177, 207, 65, 224, 81, 307, 1, 342, 9, 118, 225, 68, 529, 0, 753, 467, 549, 623, 641, 27, 757, 607, 81, 632, 389, 846, 801, 905, 981, 261, 81, 243, 1757, 1554, 2241, 2383, 249, 792, 1329, 851, 729, 1332, 2529, 1737, 2793, 298
OFFSET
1,5
LINKS
FORMULA
a(n) = A000244(n) mod A000290(n).
EXAMPLE
a(4) = 1 because 3^4 = 81, 4^2 = 16 and 81 = 1 mod 80.
a(5) = 18 because 3^5 = 243, 5^2 = 25 and 243 = 18 mod 25.
MAPLE
a:= n-> 3&^n mod n^2:
seq(a(n), n=1..60); # Alois P. Heinz, Dec 22 2013
MATHEMATICA
Table[Mod[3^n, n^2], {n, 100}] (* Alonso del Arte, Dec 11 2013 *)
Table[PowerMod[3, n, n^2], {n, 100}] (* Harvey P. Dale, Aug 27 2019 *)
PROG
(Python)
for n in range(1, 100): print(str(3**n % n**2), end=', ')
(PARI) a(n) = lift(Mod(3, n^2)^n); \\ Michel Marcus, May 05 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Dec 11 2013
STATUS
approved