login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (1+1)X(n+1) 0..3 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..1+1} nondecreasing
1

%I #4 Dec 07 2013 22:18:02

%S 80,464,2164,8538,29595,92282,263644,699320,1740458,4097792,9188746,

%T 19731680,40763534,81331302,157237899,295394220,540582720,965763678,

%U 1687521769,2888837286,4852183110,8006958320,12996640502,20772709470

%N Number of (1+1)X(n+1) 0..3 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..1+1} nondecreasing

%C Row 1 of A233353

%H R. H. Hardin, <a href="/A233354/b233354.txt">Table of n, a(n) for n = 1..72</a>

%e Some solutions for n=5

%e ..1..1..1..1..1..2....3..0..1..0..2..2....0..0..1..3..0..2....0..1..3..0..2..3

%e ..1..1..1..3..3..3....0..1..1..2..3..3....1..1..1..1..3..3....0..0..0..3..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 07 2013