login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integer areas A of integer-sided cyclic quadrilaterals such that the length of the circumradius is a perfect square.
4

%I #10 Mar 17 2018 04:08:26

%S 672,768,936,1200,10752,12288,14976,19200,34560,40560,48840,54432,

%T 57120,62208,75816,97200,138720,154560,172032,196608,239616,307200,

%U 420000,480000,552960,585000,648960,750000,781440,870912,913920,995328,1213056,1555200,2219520

%N Integer areas A of integer-sided cyclic quadrilaterals such that the length of the circumradius is a perfect square.

%C Subset of A210250. The corresponding square circumradius are 25,25,25,25,100,100,100,100,169,169,169,169,225, ...

%C In Euclidean geometry, a cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed, and the vertices are said to be concyclic.

%C The area A of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta's formula: A = sqrt((s - a)(s -b)(s - c)(s - d)) where s, the semiperimeter is s= (a+b+c+d)/2.

%C The circumradius R (the radius of the circumcircle) is given by R = sqrt((ab+cd)(ac+bd)(ad+bc))/4A.

%C The areas A of the primitive quadrilaterals of sides (a,b,c,d) are 672,768,936,1200,34560,40560,48840,57120,...

%C The areas of the non-primitive quadrilaterals of sides (a*p^2, b*p^2, c*p^2, d*p^2) are in the sequence with the value A*p^4.

%C The following table gives the first values (A, a, b, c, d, R) where A is the integer area, R the radius of the circumcircle, and a, b, c, d are the integer sides of the cyclic quadrilateral.

%C +-------+-----+-----+-----+-----+-----+

%C | A | a | b | c | d | R |

%C +-------+-----+-----+-----+-----+-----+

%C | 672 | 14 | 14 | 48 | 48 | 25 |

%C | 768 | 14 | 30 | 30 | 50 | 25 |

%C | 936 | 14 | 30 | 40 | 48 | 25 |

%C | 1200 | 30 | 30 | 40 | 40 | 25 |

%C | 10752 | 56 | 56 | 192 | 192 | 100 |

%C | 12288 | 56 | 120 | 120 | 200 | 100 |

%C | 14976 | 56 | 120 | 160 | 192 | 100 |

%C | 19200 | 120 | 120 | 160 | 160 | 100 |

%C | 34560 | 130 | 130 | 238 | 338 | 169 |

%C | 40560 | 130 | 130 | 312 | 312 | 169 |

%C | 48840 | 130 | 238 | 240 | 312 | 169 |

%C | 54432 | 126 | 126 | 432 | 432 | 225 |

%C | 57120 | 238 | 238 | 240 | 240 | 169 |

%C | 62208 | 126 | 270 | 270 | 450 | 225 |

%C | 75816 | 126 | 270 | 360 | 432 | 225 |

%C | 97200 | 270 | 270 | 360 | 360 | 225 |

%C .......................................

%D Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

%H Wolfram MathWorld, <a href="http://mathworld.wolfram.com/CyclicQuadrilateral.html">Cyclic Quadrilateral </a>

%e 936 is in the sequence because, for (a,b,c,d) = (14,30,40,48) we obtain:

%e s = (14+30+40+48)/2 = 66;

%e A = sqrt((66-14)*(66-30)*(66-40)*(66-48))=936;

%e R = sqrt((14*30+40*48)*(14*40+30*48)*(14*48+30*40))/(4*936) = 93600/3744 = 25 is square.

%t nn=500;lst={};Do[s=(a+b+c+d)/2;If[IntegerQ[s],area2=(s-a)*(s-b)*(s-c)*(s-d);If[0<area2&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[Sqrt[(a*b+c*d)*(a*c+b*d)*(a*d+b*c)/area2]/4]],AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b},{d,c}];Union[lst]

%Y Cf. A210250.

%K nonn

%O 1,1

%A _Michel Lagneau_, Dec 07 2013