Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 26 2014 04:04:57
%S 1,4,2,9,10,4,16,28,24,8,25,60,80,56,16,36,110,200,216,128,32,49,182,
%T 420,616,560,288,64,64,280,784,1456,1792,1408,640,128,81,408,1344,
%U 3024,4704,4992,3456,1408,256,100,570,2160,5712,10752,14400,13440,8320,3072,512
%N Riordan array ((1+x)/(1-x)^3, 2*x/(1-x)).
%C Subtriangle of the triangle in A208532.
%C Row sums are A060188(n+2).
%C Diagonal sums are A000295(n+2)=A125128(n+1)=A130103(n+2).
%F G.f. for the column k: 2^k*(1+x)/(1-x)^(k+3).
%F T(n,k) = 2^k*(binomial(n,k)+3*binomial(n,k+1)+2*binomial(n,k+2)), 0<=k<=n.
%F T(n,0) = 2*T(n-1,0)-T(n-2,0)+2, T(n,k)=2*T(n-1,k)+2*T(n-1,k-1)-2*T(n-2,k-1)-T(n-2,k) for k>=1, T(0,0)=1, T(1,0)=4, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
%F Sum_{k=0..n} T(n,k) = A060188(n+2).
%F Sum_{k=0..n} T(n,k)*(-1)^k = n+1.
%F T(n,k) = 2*sum_{j=1..n-k+1} T(n-j,k-1).
%F T(n,k) = 2^k*A125165(n,k).
%F T(n,n) = 2^n=A000079(n).
%F T(n,0) = (n+1)^2=A000290(n+1).
%F exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(16 + 28*x + 24*x^2/2! + 8*x^3/3!) = 16 + 60*x + 200*x^2/2! + 616*x^3/3! + 1792*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), 2*x/(1 - x) ). Cf. A125165. - _Peter Bala_, Dec 21 2014
%e Triangle begins :
%e 1
%e 4, 2
%e 9, 10, 4
%e 16, 28, 24, 8
%e 25, 60, 80, 56, 16
%e 36, 110, 200, 216, 128, 32
%e 49, 182, 420, 616, 560, 288, 64
%e 64, 280, 784, 1456, 1792, 1408, 640, 128
%e 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
%e 100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
%Y Cf. Columns: A000290, A006331, A112742.
%Y Cf. Diagonal: A000079.
%K nonn,tabl
%O 0,2
%A _Philippe Deléham_, Dec 07 2013