Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jun 20 2021 21:52:35
%S 0,1,2,3,4,5,7,6,8,9,11,10,15,14,12,13,16,17,19,18,23,22,20,21,31,30,
%T 28,29,24,25,27,26,32,33,35,34,39,38,36,37,47,46,44,45,40,41,43,42,63,
%U 62,60,61,56,57,59,58,48,49,51,50,55,54,52,53,64,65,67,66
%N Permutation of nonnegative integers: a(n) = A054429(A006068(n)).
%C This permutation transforms the enumeration system of positive irreducible fractions A007305/A047679 (Stern-Brocot) into the enumeration system A071766/A229742 (HCS), and the enumeration system A162909/A162910 (Bird) into A245325/A245326. - _Yosu Yurramendi_, Jun 09 2015
%H Antti Karttunen, <a href="/A233279/b233279.txt">Table of n, a(n) for n = 0..8191</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(n) = A054429(A006068(n)).
%F a(n) = A006068(A063946(n)).
%F a(n) = A154435(A054429(n)).
%F a(n) = A180200(A258746(n)) = A117120(A180200(n)), n > 0. - _Yosu Yurramendi_, Apr 10 2017
%t Module[{nn = 6, s}, s = Flatten[Table[Range[2^(n + 1) - 1, 2^n, -1], {n, 0, nn}]]; Map[If[# == 0, 0, s[[#]]] &, Table[Fold[BitXor, n, Quotient[n, 2^Range[BitLength[n] - 1]]], {n, 0, 2^nn}]]] (* _Michael De Vlieger_, Apr 06 2017, after _Harvey P. Dale_ at A054429 and _Jan Mangaldan_ at A006068 *)
%o (Scheme) (define (A233279 n) (A054429 (A006068 n)))
%o (R)
%o maxrow <- 8 # by choice
%o a <- 1:3
%o for(m in 0:maxrow) for(k in 0:(2^m-1)){
%o a[2^(m+2)+ k] <- a[2^(m+1)+ k] + 2^(m+1)
%o a[2^(m+2)+ 2^m+k] <- a[2^(m+1)+2^m+k] + 2^(m+1)
%o a[2^(m+2)+2^(m+1)+ k] <- a[2^(m+1)+2^m+k] + 2^(m+2)
%o a[2^(m+2)+2^(m+1)+2^m+k] <- a[2^(m+1)+ +k] + 2^(m+2)
%o }
%o (a <- c(0,a))
%o # _Yosu Yurramendi_, Apr 05 2017
%o (R)
%o # Given n, compute a(n) by taking into account the binary representation of n
%o maxblock <- 7 # by choice
%o a <- 1
%o for(n in 2:2^maxblock){
%o ones <- which(as.integer(intToBits(n)) == 1)
%o nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
%o anbit <- nbit
%o for(k in 2^(0:floor(log2(length(nbit)))) )
%o anbit <- bitwXor(anbit, c(anbit[-(1:k)], rep(0,k))) # ?bitwXor
%o anbit[0:(length(anbit) - 1)] <- 1 - anbit[0:(length(anbit)-1)]
%o a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
%o }
%o (a <- c(0,a))
%o # _Yosu Yurramendi_, May 29 2021
%o (Python)
%o from sympy import floor
%o def a006068(n):
%o s=1
%o while True:
%o ns=n>>s
%o if ns==0: break
%o n=n^ns
%o s<<=1
%o return n
%o def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
%o def a(n): return 0 if n==0 else a054429(a006068(n)) # _Indranil Ghosh_, Jun 11 2017
%Y Inverse permutation: A233280.
%Y Cf. A006068, A054429, A063946, A154435.
%K nonn
%O 0,3
%A _Antti Karttunen_, Dec 18 2013